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Asymptotic solutions of the differential equations
dw/dz? = {uz"+f(z)} w (n=0,1)
for large positive values of u, have the formal expansions

P ¢ B

U =0 u®

us ?

w = P(z) {1 + % A‘(Z)}+
s=1
where P is an exponential or Airy function for n =0 or 1 respectively. The coefficients 4,(z) and
B (z) are given by recurrence relations. This paper proves that solutions of the differential equa-
o tions exist whose asymptotic expansions in Poincaré’s sense are given by these series, and that the

expansions are uniformly valid with respect to the complex variable z. The method of proof

2 \ differs from those of earlier writers and fewer restrictions are made.
—
O E 1. INTRODUCTION AND SUMMARY
i 5 The purpose of this investigation is to determine asymptotic expansions of solutions of the
T O differential equation 4
w
s = (@) e} w (1)

for large values of the parameter u. It is supposed that z lies in a simply-connected domain
D and p(z), ¢(z) are analytic functions of the complex variable z independent of u. Attention
will be confined to positive values of u; if « is a large complex parameter of the form
u=|u|e?, where 9 is a fixed real number, then the transformation z’ = e!¥z converts
(1-1) into the same form of equation but with « replaced by |u]|.
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308 F. W. J. OLVER ON THE

The asymptotic character of the solutions of (1-1) as u—00 can take many different forms
depending on the number and nature of the transition points of (1-1) in D, such points being
defined heret as ones at which p(z) vanishes, or p(z) or ¢(z) has a singularity.

Many papers have been published on this subject. Nevertheless, the existing theory does
not yet appear to be complete even in the cases when (1-1) has no transition points or only
one transition point, a simple zero of p(z). In the more recondite cases previous work has
generally been concerned only with the determination of the asymptotic form of the solu-
tions in the immediate neighbourhood of various kinds of transition points, and asymptotic
expansions have not been investigated.

It may be thought that the form of equation (1-1) is unduly restrictive, particularly as
other writers have considered more general forms, for example

‘%: {up(z)+§09—;fgz—) w. (1-2)

The principal reason for adopting the present form of equation is that many important
second-order differential equations are already in the form (1-1), or may be readily trans-
formed into it. Such equations include those of Besgel, Weber and Legendre, and new
asymptotic expansions of standard solutions of these equations for large orders have been
obtained, and it is hoped to give these in subsequent papers.

Three cases will be considered here, and they will be referred to as cases A, B and C. They
occur respectively when equation (1-1) has, in D, (i) no transition points, (ii) one transition
point, a simple zero of p(z), (iii) one transition point, a double pole of 4(z). The expansions
in the three cases are similar and it is convenient to treat them together. Similar expansions
also exist when the only transition point is simultaneously a simple pole of p(z) and a double
pole of ¢(z), but consideration of this important case is deferred.

The paper is arranged as follows. In §2 it is shown that (1-1) may be transformed into
a similar equation with p(z) replaced by unity in cases A and C, and by z in case B. In§3
series are constructed which formally satisfy these standard forms of equation. In §4 some
relevant properties of the exponential and Airy functions are recorded. In §5 two existence
theorems are stated which reveal the asymptotic nature of the series constructed in § 3.
These theorems are the main results of the paper; their application is briefly considered in
§ 6. In§ 7 the work of other writers is outlined. The remaining sections, §§ 8 to 11, are devoted
to the proofs of the theorems stated in § 5.

2. TRANSFORMATION TO STANDARD FORM
In (1-1) let us take a new independent variable { and a new dependent variable W,

related by W — z-hw, (21)

dots denoting differentiations with respect to {. Then it is readily verified that W satisfies

ots deno
the equation LW — w2) O, =2

+ Points at which p(z) vanishes have been called turning points’ by some writers (for example, Langer
1949) and transition points by others (Watson 1944, p. 248; and Cherry 1950). The w1der definition of
transition point used here is a useful generalization.
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9 2 oss
where S0 =2%(2) +Z’~’£1~ (271) = 2%q(2) +M - (23)
d¢? 422
The relation between z and { is now prescribed in the following ways.
Case A. Here p(z) has no zeros in D. We take 2%p(z) = 1, so that
(= [tppdz (2:4)

Equation (2-2) accordingly becomes

dzw

G~ WO, (23

The relation (2-4) maps the domain D on a certain domain G in the {-plane, and it is clear
from (2-3) and (2-4) that f({) is a regular (holomorphic) function of { in G.

Case B. Here p(z) has a simple zero in D at z = z,, say, and the transformation (2-4) is
unsuitable because dz/d{ becomes infinite there. Instead, we take 2%p(z) = { and

z 3
(~[5] wepe]. (26)
Near z = z, we have '
{ = constant X (z—z,) +(z—z,)2 O(1). (2-7)
Equation (2-2) becomes %Z—V;/ = {ul+fO}Y W, (2-8)

where f({) is given by (2-3) and is a regular function of { in the transformed domain.

Case C. Here p(z) has a double pole in D at z = z,, and we may allow ¢(z) to have a single
or double pole at the same point. The same transformation (2-4) is made as in case A above,
so that the transformed equation is again given by (2:5). Near z = z, we have

p(z) = (2—25) 2 {k*+(2—2,) O(1)}, - (249)
where £ is a non-zero constant, and so
{=kln(z—z)+(z—z,) O(1). (2-10)

Thus z = z, corresponds to { = —oo exp (iargk). It is seen from (2-3) that f({) is again a
regular function of { in the corresponding {-domain. The transition point is now at infinity,
but a sufficient condition that the asymptotic expansions of solutions of (2-5) remain uni-
formly valid at infinity is (see § 5)
S =0(¢]7%), as [{]—o0. (2-11)
From (2-10) and (2-3) we obtain ‘
etk 1
z—zg~ e, f10) = " q(e¥it2g) + g+ O(el) = o+ O(eth),

as {——oo exp (iarg k), where

1 1

¢ = [z 2)*4(D) .ot g2

Thus equation (2-5) itself may violate the condition (2-11), but by making the linear change

of variables u = ute, £,(8)=fL)—c,
38-2
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. . 2w
we arrive at the equation e {u, +/1(O)} W,

which does satisfy the condition.

Thus in all three cases the original differential equation may be transformed into one of
the standard forms (2+5) or (2-8) in which f{{) is a regular function. Accordingly, we shall
confine our attention to these standard forms. It will be convenient to revert to the symbols
w, z and D in place of W, { and G respectively.

The foregoing transformation for case B was first given by Langer (1931). That for case
A is much older and was used by Liouville (1837).

3. FORMAL CONSTRUCTION OF SERIES SOLUTIONS

We consider now the standard form

d?w

a = (w2 +f(2)}w, (31)

where g(z) = 1 for cases A and C, and z for case B.
Let w = P(z) be any solution of the equation
d?w
2= ug(z) w. (3-2)
(When g(z) =1, P is an exponential function, and when g(z) = z it is an Airy function.)
Then as a possible solution of (3-1) we consider the series

P'(2) g B.(z)

D (3-3)

u >

w(z) = P2){1+ 2 Af(z)}Jr

where the coefficients 4,(z) and B,(z) are independent of 4. Term-by-term differentiation,
using (3-2), yields

© © D
w(s) = P2) 5 SO L piofiy 3 20 (3-4)
s=0 §=
and w(s) =up(z) 3 B 1 P 3 filz), (35)
s=0 s=0
where C,=A,+gB,, D,=A,+B,_,, (3:6)
and E,— Cl_,+gD, — A;'_l+gAs+2gB;-1+g'Bs_l,} 37)
1%:::Ca_%ZD;::Qfﬁ_Fl%LI%—glﬁ)

primes denoting differentiations with respect to z.
Substituting (3:3) and (3-5) in (3-1), we see that the differential equation is formally

satisfied if Es+l = gAs+l +fAs> Fy+l = ng+l +f‘Bs (38)
Substituting £, and F|,, from (3-7), we obtain
A;,—fAs’I‘QgB; +g,Bs = 09 2A;+1 +BZ—st = 0. (3'9)

These equations may be integrated to give

B, = 4g* [¢ (A~ 4 dz, Ay — 3B} [fB,dz (3:10)
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ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 311

Equations (3-10) may be regarded as recurrence relations for the coefficients 4 (z) and
B(z). Taking A, =1 we can determine all the higher coeflicients, apart from the presence
of certain arbitrary integration constants.

If the series (3-3) converged uniformly with respect to z then the process of term-by-term
differentiation would be valid, and (3-3) would define a solution of (3-1). In general,
however, the series diverges and it is natural to examine the manner and circumstances in
which (3-3) represents a solution of (3-1). As a preliminary to this purpose some relevant
facts about the Airy and exponential functions will now be stated.

4. SOME PROPERTIES OF THE AIRYT AND EXPONENTIAL FUNCTIONS

The Airy functions are the solutions of the differential equation

d%w
azé = ZW. (4:‘ ].)
One standard solution is the well-known function
. zt
. Ai(z) = m[@(é’), (4-2)

where { = £z} Itis an integral function of z, and for large | z | it takes the asymptotic values

(Watson 1944, p. 202)
Ai(2) = 5 eI O( 1), A (D) =~ e L4 0E ), (43)

when |argz|<m, and
-1
8i(—2) = - foos (L—m+e701 0( ),

A (—2) = :/%:%T{sin ((—1m)+¢ 221 0(| |1},

when | arg z | <47. The expressions (4-3) and (4-4) are equivalent in their common regions
of validity. From them we may deduce the useful inequalities

| Ai(2) | <414z [)7" [exp (—527) ||
| AT (2) | <A(1+]| 2 *) |exp (—32") |,

valid when | arg z | <=, where 4 is some constant.

(4-4)

(4:5)

The functions Ai(ze*#) also satisfy (4-1), and we shall find it convenient to use the
notation Pi(z) = Ai(z), Py(z) =Ai(zel™), Py(z) = Ai(ze ). (4-6)

Any two of these functions comprise a linearly independent pair of solutions of (4:1), the
Wronskians being

e—%wi edmi 1
W(P1>P2) = or > W<P1aP3) = o W(Pzapa) =2—

om o a

If the sectors |argz|<in, —n<argz<—¥n, In<argz<m,

(4:7)

are denoted by S,, S,, S; respectively (figure 1), then it is seen from (4-3) and (46) that
P;(z) is exponentially small in S; (j = 1,2, 3), when |z| is large. Consequently in S; any

t A fuller account of the properties of the Airy functions in the complex plane is given in the Appendix
to the following paper.
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312 F. W. J. OLVER ON THE

independent pair of solutions of (4-1) must include P;(z) as a member 1f it is to be satis-
factory from the numerical standpoint.{
Another standard solution of (4-1) is the function

Bi(z) = et Py(z) e~ Py(2), (4-8)

introduced in the British Association Mathematical Tables (1946). Although there is no region
in which Bi (z) is exponentially small, it is important because it is real when z is real and is
a numerically satisfactoryt second solution to Ai (z) for both positive and negative z; its
large negative zeros lie asymptotically half-way between those of Ai (z).

Ficure 1. Regions in which P,(z), P,(z) Ficure 2. Level curves of exp (—2z%).
and P;(z) are exponentially small. Values of |exp (—2z?) | are indicated
on the curves.

Level curves. The level curves of a function F(z) are the contours along which
| F(z) | = constant.

In later sections we are concerned with the level curves of the functions exp z and exp (—%z1).
Those of the former are straight lines parallel to the imaginary axis; those of exp (—2z%)

have the polar equation i cos 30 — constant, (4-9)

where z=rel’. Typical curves are illustrated in figure 2.

5. ASYMPTOTIC NATURE OF THE SERIES; THEOREMS A AND B

The asymptotic nature of the series given in§ 3 may be described by means of two existence
theorems. In this and the following two sections the theorems are stated and their applica-
tion described, the proofs being deferred until §§ 8 to 11.

In the following it is supposed that f(z) is regular in a simply-connected open domain D,
the boundaries of which consist of a finite number of straight lines; if D is unbounded it is

supposed thatf 12) — 0(] 2], : (51)

as | z| o0 in D, uniformly with respect to argz. We denote by D’ any simply-connected
domain lying wholly in D, the boundaries of which consist of a finite number of straight
lines not intersecting the boundaries of D.

1 For a discussion of criteria for numerically satisfactory solutions of second-order differential equations

see Miller (1950).
I There may of course be domains extending arbitrarily near infinity in which (5-1) is not satisfied.
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In the first theorem we suppose ¢; (j = 1, 2) to be an arbitrary fixed point of D’; if D" is
unbounded a; can be the point at infinity on a straight line lying in D’. In addition, we
denote by D; the domain comprising those points z of D" which can be joined to g; by a
contour which lies in D’ and is wholly to the left if j = 1, or wholly to the right if j = 2, of the
line through z parallel to the imaginary axis.

THEOREM A. Let sequences of functions A, (z) and B(z) be definedt by the relations Ay(z) = 1,

A, (z2) = —344(2) —l—%—ff(z) 4,(z) dz+ constant, (5-2)
B(2) = A,(2) + 4;-1(2), (5:3)
the arbitrary constants in (5-2) being subject to the condition that there exists a function ¢(u) of u alone,
with the asymptotic expansion © A (¢
o)~ 1+ 320, (54
as u—>o0, for a fixed point ¢ in D’.
2
Then for large u the equation % = {u?+f(2)}w (5-5)
has solutions W\(z) and W,(z) such that if z lies in D,
m—1 m—1
Wi(z) = e“Z{ > A—S(sz) +0(im);, Wi(z) = ue“z{ > Bs(sz) —I—O(Lm)}, (5-6)
s=0 U u s=0 U u
and if z lies in D,
m-1 Az 1 , m=1 B,(z 1
Wylz) = eel'3 (—)3 D ro( L)), i) = —uels (- 221 0(2)). )
§=0 s=0

where each of the O’s is uniform with respect to z. Here m is an arbitrary unbounded integer, but the
solutions W \(z) and W(z) themselves are independent of m.

Typical domains are illustrated in figures 3 and 4. The thickened lines in figure 3 denote
cuts and are the boundaries of D; the broken lines are the boundaries of D’. The domain D,
is the unshaded region in figure 4.

\\L/\/ /\\‘\
___________ /“\ \ p _ _ _ \
| S— /“{ Ll % \
— \\/\\4 \ \\
/ \.- - a,l
1
—

Ficure 3. Domains D, D’. Ficure 4. Case A: D,. Figure 5. Case B: D,.

Before stating the second theorem we introduce the following notation and definitions.
It is supposed now that z = 0 is an interior point of the domain D’:

(i) v=ut; p,=1, py=el"l) p,=e-¥7i,

T Here 4, corresponds to 4; and B, of § 3, B, to C; and D, of § 3, and u has been replaced by u2.
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314 F. W. J. OLVER ON THE

(ii) a; (j = 1,2,3) is an arbitrary fixed point of the region common to the domain D’
and the sector S; (figure 1). If this common region is unbounded then a; can be the point
at infinity on a line lying in it.

(iii) D; is the domain comprising those points z of D’ for which

| exp{—3%(p;2)} | = exp{—5(p; 4;)} |,

and a contour can be found joining z and «; which lies in D" and at most two of the sectors
S., S,, S;, and does not cross the level curve of exp { —3(p; z)!} through z.

A typical domain D, corresponding to domains D and D’ of figure 3 is the unshaded
region in figure 5. The curved boundaries are level curves of exp (—3%z%) (cf. figure 2).

TueoreM B. Let sequences of functions A,(z), By(z), Ci(z) and D(z) be defined by the relations
Ay(2) =1,

B(2) =4 f S{f(0) 4,00 — (D)},
(5:8)
A,..(2) = z)+% ff(z z) dz+ constant,

C

S

(2) = Ai(2) +2B,(z), Di(z) = 4,(2) +B;_,(2), (5:9)

the arbitrary constants in the second of (5-8) being subject to the condition that there exists a _function
P (u) having the asymptotic expansion

$lu) ~1+ gl A——;Ec), (5°10)
as u->o0, for fixed a point ¢ in D’.
2,
Then the equation ((ii 5 = {uz+f(z)}w (5-11)
has solutions W;(z) (j = 1,2, 3), such that if z lies in D
g A2 225 BLE), exp (ot 1 |
— Byfoz) 1+ 5 5 g3 S R 0(5), (5-12)

I/V]f(z)sz(vz)g +vP(vz){l—|~§D;§Z)} +(1+|vz |[}) exp{—2(p vz)%}O( >, (5:13)

as u—>00, where the functions P;(z) (j = 1,2,3) are defined by (4-6) and the O’s are uniform with
respect to z. Here m is an arbitrary unbounded integer, and the solutions W;(z) are independent of m.

Remarks on the theorems. (i) It is evident that (5-6) and (5-7) are asymptotic expansions
in the classical sense of Poincaré. Similarly, it may be verified that (5-12) and (5-13) have

th ivalent forms o ©
€ equivale W) ~ Py(oz) 3 3 Au(Z)+P5;/Z)EOBu(SZ)’ (5-14)
Wj(z) ~ By(oz) 3 S wopoz) 3 22, (5:15)

e
(ii) The condition that a function ¢(«) exists having the properties (5:4) or (5:10) is

not very restrictive. We could, for example, take any set of values for 4 (¢) such that
Yu~sA,(c) converges for large u, or even take 4., ,(c) = 0 (s=0).
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6. APPLICATION OF THE THEOREMS

The coefficients A,(z), B,(z), C,(z) and D,(z) defined by equations (5-2), (5:3), (5'8)
and (5-9) are regular functions of z in D. In these relations they are expressed in the form
ofintegrals, and it may not always be convenient or even possible to perform the integrations
analytically and obtain explicit expressions for the coefficients. The integrals may usually
be evaluated numerically, however, and tables of coefficients can be prepared for the
standard solutions of a given differential equation. An important practical point is that each
quantity occurring in the series (5-6), (5:7), (5-14) and (5-15) is a function of a single vari-
able, and the general tabulation of the solutions W;(z), which themselves are functions of
two variables z and u, is mainly reduced to the preparation of a few single-entry tables. Such
tables have, in fact, already been compiled by the writer for Bessel’s and Legendre’s
equations.

These points are illustrated in the paper immediately following this, in which theorems
A and B are used to obtain asymptotic expansions of Bessel functions of large order. In
addition, it is shown there how the asymptotic series may be reverted to obtain powerful
asymptotic expansions for the zeros and stationary values of the functions.

7. PREVIOUS RESULTS

The earliest writings on the asymptotic solution of differential equations for large values
of a parameter appear to be those of Carlini,{ Green (1837) and Liouville (1837). These
authors gave, without rigorous investigation, formal asymptotic solutions in intervals
free from transition points (defined in §1). Carlini considered a form of Bessel’s equation
for large orders, but the equations of Green and Liouville were more general.

Extensive researches have been published on the existence theory of asymptotic solutions
in intervals free from transition points. The principal contributors are Horn (18¢g),
Schlesinger (1907), Birkhoff (1908), Tamarkin (1928) and Turrittin (1936). These writers
investigated the asymptotic solution of an arbitrary number of simultaneous first-order
differential equations for real values of the independent variable z and large complex values
of the parameter . Theorem A, on the other hand (in the case of second-order equations),
provides a satisfactory account of the behaviour of solutions in the complex z-plane. There
is a further marked difference. The relevant final result of the earlier writers applied to
equation (5-5) shows that for each value of m, pairs of solutions exist having the asymptotic
forms (5-6) and (5-7). Theorem A gives the more powerful result that there exists a pair of
solutions having the properties (5-6) and (5-7) for a/l values of m; in a sense this means we
can take m = oo in the earlier result.

If the range of integration extends from} z = —c0 to z = o0 it can be deduced quite
simply from the earlier result that solutions Wi¥(z) and W#(z) exist, independent of m,
having the asymptotic forms (5:6) and (5-7) with the arbitrary constants in (5-2) fixed by

Ag(—00) =0 for W(z), A, (+00) =0 for W¥(z) (s=0). (7-1)
For let W, (z) and W, ,(z) be the solutions having the properties

(z)-euz{1+mzl‘4(z>+0( =) Wm,z(z)zewz{l#:g( 2B Lo(L)), (re)

t An account of Carlini’s paper is given by Watson (1944, p. 6).
1 There are complications if the range of integration is finite.

Vor. 247. A. 39
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with the values of the coefficients 4,(z) fixed by the first of (7-1). We define W¥(z) to be the
solution of (5-5) with the condition?

Wik(z) ~e» as z->—o0. ‘ (7-3)

It can be expressed in the form '

Wl*( ) km 1 W l(z) +km,2 Wm,z(z)v (7.4)
where £, | and £,, , are independent of z. Letting z——o0, we see from (7:2) that for all

fficiently 1
sufficiently large u ko= 0, Ky =1+0(wm).
Substituting this result and (7-2) in (7-4), we obtain
: m—1
wiz) = e=14"S 2B o( 1)), (7:5)

and, since W}¥(z) is obviously independent of m, this is the result stated. Similarly for W3 (z).
If ¢ is any point of the real axis, we may multiply the solution W¥(z) by 1/w(«), where
() is a function of « alone having the Poincaré asymptotic expansion

w() ~1+20Y (0) A;(c) ey (7-6)

and the coeflicients 4, in this relation are ﬁxcd by the first of (7-1). It would then follow
that a solution W,(z), independent of m, exists having the property (5:6) with a new set
of coeflicients 4,; the arbitrary constants in (5-2) are now determined by

4,.4() =0 (s=0).
This is essentially the result given by theorem A in the case of real variables. The proof is
incomplete, however, until it is established that w(«) does exist having the property (7-6).
This particular result is in fact obtained later in case B (equation (10-3) with z = ¢), and
a similar proof of it holds in case A. The proofs of theorems A and B given in this paper do
not follow these lines however, and are quite independent of earlier results.

One of the first successful attempts to deal with the case when there is a transition point
in the interval of integration} is that of Jeffreys§ (1924; or Jeffreys & Jeffreys 1946,
pp. 492-4). Hereasoned that if the function p(z) in (1-1) has a simple zero at z = z,, then
near this point the differential equation is approximately represented by
O = ! (z0) (z—20)

solutions of which are Ai (Z) and Bi (Z), where

Z={up'(zp)} (z2—2)-
The drawback to this procedure is that the functions Ai(Z) and Bi(Z) are reasonable
approximations to solutions of (1-1) only near z = z,, and in any case there is no indication
of the error of the approximation.

+ That such a solution exists follows from (5-1) and the ordinary asymptotic theory of linear differential

equations (Ince 1944, §7-31).
+ A review of the literature concerned with this case has been published recently by the California

Institute of Technology (1953).
§ In a recent paper (1953) Jeffreys points out that this approach was partially anticipated by Gans and

Rayleigh.
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These disadvantages are largely removed in the method originally given by Langer
(1931). He showed how an equation of the form (1-1) may be transformed, as shown in § 2,
into (2-8), and he proved that under certain conditions equation (2-8) possesses solutions
which for large u are asymptotic to Bessel functions of order one-third. The interval in which
these approximations are valid is actually a function of » which shrinks to zero as u—-00.
However, Langer also gave approximations to the same solutions in terms of exponential
functions which are valid outside this interval. He later extended these results to the case
of complex variables (1932) and to different kinds of transition points (1934, 1935).

The asymptotic form of solution (5:12) was also given, in effect, by Langer (1937, 1949),
who proved a result concerning its validity closely analogous to that of Birkhoff and others
quoted above for case A; it concerns only real values of the independent variable, and the
asymptotic solutions obtained depend on the integer m. An investigation of the solutions
when the independent variable is complex has been made by Cherry (1950), who has
proved a result resembling theorem B of § 5.

Using the present notation, Cherry shows that solutions W,, ;(z) (j = 1,2, 3) of (5-11)
exist for large positive » such that

W s2) = o) 3 28)  &alt))  FO2) 52 B2 Bl

where |a,,(z,u) | and | b,,(z,u4) | are bounded; this result is similar to that of Birkhoff for
real variables quoted above for case A (see equations (7-2)). By making an additional assump-
tion Cherry then deduces that in certain bounded z-domains solutions W} (z) exist,
independent of m, having the asymptotic expansions

W) ~Pon) 3 BE), FiG2) 3 Bl

s=0 s=0 us

; (7-7)

as u—>00, uniformly with respect to z, where the coefficients 47(z), Bi(z) are the values of
A,(z), B,(2) given by (5-8) with the arbitrary constants fixed by
A (0p5h) =0 (520),

where p; is defined in § 5. The assumption is that f{(z) is regular in sectors of non-zero angles
extending to infinity centred on the rays arg z = 0, 42, and in these sectors f(z) = O(| z|)
as | z|+oo (Cherry 1950, p. 232). The result (7-7) is similar to (7-5) above for case A.

Unlike theorem B Cherry’s result does not show that solutions exist when the values of
A,(z), Ay(2), ..., in (5-8) are prescribed at arbitrary points. Moreover, in this theorem it is
not stipulated that the rays argz = 0, 42, are included in the domain in which f{(z) is
regular, or that the domain of uniform validity of the expansion has to be bounded.

"The rest of this paper is concerned with the proof of the theorems of§ 5. The methods used
differ considerably from those of Langer and Cherry.

8. PRELIMINARIES IN THE PROOF OF THE EXISTENCE THEOREMS

Only a proof for theorem B will be given, since a similar but simpler proof holds for
theorem A.
In the next section we consider properties of the coefficients 4 (z) and B,(z) defined by
(6-8), and it is convenient to introduce here some definitions concerning the function f(z).
39-2
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It was postulated in §5 that f(z) is regular in a simply-connected open domain D, the
boundaries of which consist of a finite number of straight lines, and that if D is unbounded,
J(2) = O(] z|7?) as | z| =00, uniformly with respect to argz. Consequently in D,

| fl2)|<Fy, | 22f(2) |<F,, (8:1)

where F| and F, are assignable constants. We shall sometimes use the symbol F generically
to denote a combination of these constants.

From Liouville’s theorem it follows that D cannot be the whole z-plane, unless f(z) =0.
In other words, a definite boundary always exists.

Auxiliary domains. Let us suppose that straight lines are drawn in D parallel to the boun-
daries and at a distance & from them; if the boundaries include cuts then semicircles of
radius d are described centred on the end-points. Clearly a constant 4 can be assigned such
that for every positive §<d, the aggregate of lines and semicircles defines the boundary of
another simply-connected domain which also contains z = 0 as an interior point. This
domain will be denoted by Dy, and when & = 4 by D,,.

Neighbourhoods of infinity. There is only a finite number of points at which the boundaries
of the domains D and D, change direction abruptly, including the end-points of cuts. Let the
one most remote from the origin be of affix R’, and let R=max (R'+d, 1). The simply-
connected subdomains of D lying outside the circle | z| = R will be denoted by E!, E?, ...,
or, typically, by E. Similarly, the simply-connected subdomains of Dy lying outside the circle
| z| = R+ 8 will be denoted by EL, E2, ..., or typically by E,. |

Where the symbol 4 is used in the following sections it is assumed that

0<d<min (d, 3R, 1). (8-2)

9. PROPERTIES OF THE COEFFICIENTS A (z) AND B((z)

These coeflicients are defined by A4,(z) = 1 and (see (5-8))
B(5) =1 [ AW~ 20} (5>0), (1)
0
A,.,(2) =—1B;(z) +%fzf(t) B (t) d¢+constant  (s=>0). (9-2)
0

The integration paths in (9-1) and (9-2) both lie in D, and the branches of the square roots
occurring in (9-1) are taken to be the principal ones near the origin and defined by con-
tinuity elsewhere. Clearly 4,(z) and B,(z) are regular functions of z in D.

The arbitrary constant in (9-2) is fixed temporarily by the condition

An(e) =0 (s>0), (9:3)

for some point ¢, which may be at infinity, in D,. Then

A,(2) = —4Bi(2) +1 [ S0 B.(9) dt+3B(0). (9-4)

This restriction is relaxed in § 11, and in any case it is not necessary for the truth of lemma 1
which follows.
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Lemma 1. If | z| —o0 in Eg, then
4y(2) = o, +0(| 2| ), (9-5)
B(2) = Bzt 0(| 2| ™), (9-6)
uniformly with respect to arg z. The quantities o, and f; are constants, and the branch of z7* in (9-6)
is continuous in Ej.
This may be proved by induction. Suppose that (9-5) is true for a particular s as | z | -0
in E,, where 7 is an arbitrary number lying in the range 0<y<d. Then in E,
A7) =a+a,2), where |a2)]<A,|z|™, (9°7)
A, being a constant.
Now if z lies in E,, where 7 <e<(§, we have from Cauchy’s integral formula
1 A1) 4,1 20

A = — = —
() MY |1z |=e—y (E—2)° M| zlmey (—2)°

ds,
and so, using (9-7),

| 47(2) | < A _0(zY, as |z|>w. (9-8)

2
(e=m2{lz]—(e=m}
From this result and (5-1), (9-7) it is seen that the integral

R UCRROEHOIE

converges as | z|—oo in E,, and hence (9-1) may be written in the form

B() =Bz t+b(2), b(2) = =iz [ AW - A0}, (99)

where f, is a constant, and the upper limitco denotes a point at infinity in E,. From (5-1),
(9'7) and (9‘8) we see that bs(Z) — O(l z |_§), (9.10)

as | z|->co in E,. Thus if (9-5) is true in E,, then (9-6) holds in E,.

Next, it follows from (5-1), (9-10) and the first of (9-9) that f : S(t) By(t) dt converges as
0

| z| -0 in E.. We may therefore write (9-2) in the form

. A1 (2) = agyy+a,,4(2),
where a ., is a constant and

4,1(2) =—1Bi@) —} [ S0 Bt (9-11)

From (9-1) we obtain ’ .

By(2) = {f(2) 4,(2) — 45(2) — B,(2)}/ (22), (9-12)

(cf. (3:9)), and referring to (9-5), (9-8), (9-9) and (9-10) it is seen that Bi(z) = O(| z|¥).

Hence from (9-11) we deduce that a,,,(z) = O(| z|™), as | z| >c0 in E,. This completes
the proof of lemma 1.

LemMmA 2. When z lies in Dy and | ¢| < T, the series
o 125 © 125
A(z, 1) =s§0As(z) DI B(z,t) = 3 B,(z2) @0’ (9-13)

converge uniformly with respect to z and ¢. Here T> 0 is an assignable constant which may depend on §,
but is independent of z.
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Let the maximum? moduli in Dy of 4,(z), 4.(z), 4](z), B,(z) and B;(z) be denoted by
M(5), MP(0), MP(4), P,(0) and PP (9) respectively, and let 7, ¢ be arbitrary numbers such
that 0<y<e<.

From (9-1) we obtain

| B(2) <%z |7

[Crr A —axopar.

If the domain D, were a star-domain the path of integration could be taken to be a straight
line, and using (8-1) we would immediately deduce that

P(e) <F\Mi(e) + M (e).

In general, however, the path cannot be taken to be a single straight line but by considering
separately the three parts into which it is divided by the circles |z| = R and |z| = p,
where p is the shortest distance between z = 0 and the boundary of D, it may be seen that

P (e) <k{F\M(e) +MP(e)}, (9-14)
where «>1 is a constant whose value depends on the configuration of the boundaries of

the domains D and D,,.
Similarly, from (9-4) we obtain, using now the symbol « generically,

Ms+l(€) <P§l)(€) +KFP3(€)' (9'15)

From the maximum-modulus theorem and lemma 1 with § replaced by ¢, it follows that
| Bi(z) | attains its maximum value in D, on the boundary. Hence from (8-1) and (9-12)

we find that PO (6) <M, (6) + M2 () +P. ()} (20). (9-16)
Combining (9-14), (9-15) and (9-16), we obtain
M, (6) <{KPF+ (1+k) (20) " HE M (e) +- M (e)}- (9-17)
Now if z lies in D,, we have from Cauchy’s integral formula
AZ(Z) a %flt—z [=e—y UA‘X‘(—gE a;
and hence MP(e)<2(e—n) 2 M(n). (9-18)
Substituting this result in (9-17) and using the fact that M, (¢) <M (), we obtain
M,(6) <GM,(n), } o1s)
where G = {F+ (1+x) (20)HEF, +2(e—1) 2.
This result is the key to the proof, and it may now be completed as follows. Let us write
3,,’82—3—;—7«23 (n=0,1,2,...,5). (9-20)
Then from (9-19) we obtain
M(8)=M(8,,) <GM,_(3,,,) <GIM,_5(d,,) <... <G, (9-21)
where G, ={k2F+ (1+«) (20) "1} (F} +25207%) <kys® (5= 1),} (9:22)
ky={kF -+ (1-4€) (20)'} (F, +2872).

T The existence of these maxima follows from lemma 1.
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Thus if z lies in Dy, then

| 4,(2) |< ML) <kjs (s>1). (9-23)
Further, from (9-18) to (9-22) we deduce that
M2, (0)<20722M_ (9, ,) <20722G5~1 < 2025 1s%. (9-24)
Substituting (9-23) and (9-24) in (9-14), we see that if z lies in Dy, then
| B,(2) | <P,(0) <kk§{F,s>+20-2(s+1)>+2}. (9-25)
The truth of lemma 2 is now obvious from the results (9-23), (9-25) and Stirling’s formula
(2s) 1~ /(2m) sZ+E Q2%+ 25, (9-26)

The value of 7 can be taken to be any positive number less than 2e~! £5#.

LemMA 3. If z lies in E; and |t | <7, then

2 Alz0)= 3 A;(z)(;i), —0(|z|, (9-27)
aaatA(z, )= Z Aq s(2) (@ & 3—1)| O(|z|), (9-28)

as | z| =00, uniformly with respect to ¢ and arg z. Here 7 is an assignable number independent of z,
and 0<1<T.

To prove this result it is necessary to examine how the constants implied in the O’s
occurring in the proof of lemma 1 depend on s.

As in the proof of lemmas 1 and 2 it is supposed that # and ¢ are arbitrary numbers such
that 0<p<e<d. We first investigate the connexion between A; and A,,,, where A, is the
constant introduced in (9-7).

If z lies in E,, then from (9-8)

2 A 28
A(2) | < 2 < ST 9-29
R EE GO 29
since from (8-2), |z|—(e—n)>|z|=8>|z| 1 —0RY)>%|z|.
Using this result and (8-1), (9-7), we find that
F A 282 U
~3 Y 14 T2 s ~ £l £ H
|24 A(2) DY < (| o) o e (990)
where = Byl 2, | +4) + 26 —1) 2, (9-31)

since | z|>1in E, (see §8).

In the integral (9-9) the path of integration may be taken to be a straight line whose
equation is of the form ¢ = z+pei®, where 0<{p<c0, w is a constant, and on the path
| ¢]2=]z |2+ p% Accordingly, we obtain from (9-9) and (9-30)

1 r* udp T .
5@ <apzp, (2t alew (0:32)
Substituting this result and (9-7), (9-9) and (9-29) in (9-12), we obtain
| F, 244, | Bl s \ _|Bo |42
180 1<zt (12 1) ez e < s 039
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Similarly, from (9-11) using (9-32) and (9-33), we find that

o) | < Fl [RGB gy 1) (18 ) 21

4|z[! (lz]*+p%)*
Substituting for g, from (9-31) and using (8-2), we prove that:

1 a,(2) | <A | z|7F i E,, )

y |a(2) [<A] 2] . -
then |1 (2) | <F{la |+ [ A [ +A(e—n) 2} 2] in E,

We now consider the magnitudes of | o, | and | f;|. Letting | z| -0 in E;, we see from
(9'7) and (9‘23) that l(xsl<k§52$, (9.35)
where £; is defined by (9-22). Next we have by definition (see (9-1) and (9-6))

b= 5[ W A0 - 203 e (9:36)

If ¢ lies in E,, then from (9-29)
, A.:',(t) , <2§/1s(€———77>—2 I t,_%,

and if ¢ lies anywhere in D,, then clearly
| 4,(@) [<Mi(e), | 45(0) |[<MP(e).

Substituting these estimates in (9-36), we see that

| B | <kF{M(e) + M (e) +-A (e — 1),
where « is the generic constant introduced in (9-14) and (9-15). Hence, with the aid of
(9-23) and (9-24), we obtain

| Ay | <wbFe k(s +1)%+2+A (e —1) 7%, (9-37)
where £, is defined by (9-22) with d replaced by ¢. Substituting (9-35) and (9-37) in (9-34)
and changing s into z— 1, we see that:

If |z%a, ,(z) |<A,-, in E,, } (938)
then | Zla,(2) [ <«kFe 2{(k"~n? A, (e—n)"% wm E,.

Let { be any fixed number in the range 0<{<<d, and let us write

G =CHE(0—0) (1= 0,1,2,..,55 521).
Then taking 7 = {, ;= {, ¢ = {; ; and n = 1 in the result (9-38), we see that
| Z'ay(2) | <kFEE<kFC2 = Ay
say. Similarly,
| Zay(2) | <kFG R 20+ Ay, 20— ) T2 <k FLHE 20+ Ay 2 (0—0) 72} = Ay,

say, and generally, | Z%a,(2) | <A, (n=1,2,...,5), (9-39)
where Ays = KFCHEE 12 -4,y (20 —() 2. (9-40)

Let us write N = Kngtn+2,

where . K = max [kg, « F{~H{1+ (6 —{)~%}]. (9-41)
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Then it is evident that
KBC2 kg a4 N 2(8—0) 2 < kP2, {1 +52(0—0) 2 < Kot , — ¥ .

From this inequality and (9-40) it follows by induction that
A, <A¥s (n=1,2,...,s),

and, in particular, Ay o <Ak = Kos2+2,

Collecting these results, we see that if z lies in E; then

| 4,(2)—a, | <K | 2|,

where K is independent of z and s. Using Cauchy’s integral formula we easily deduce from

this result that | 4;(z) | < constant x Kss2+2| z |4,

and from this inequality and (9-26) the truth of lemma 3 is established.

10. Proor orF THEOREM B

Let us suppose that the domain Dy (defined in §8) contains the whole of D’ (defined
in §5); this can always be arranged by taking § to be sufficiently small. Consider the
functions L;(z) (j = 1,2, 3) defined by

Lj(z) = uiP,(v2) f "e~tvu A(z, 1) di 4 u=3P)(02) f "e-tvuB(z,1) dt, (10-1)
0 0
where v=u}, A(z,{) and B(z,t) are given by (9-13), and 7 is the quantity introduced in
lemma 3. More accurately, 7 is the least of all such quantities when all the subdomains
E}, E3, ..., are taken into account. The derivative L;(z) is given by

’ T u 24 i T u oB
Li(z) = utP;(vz) foe v (Fz- —l—zB) dt+u=tP;(vz) fo e~V (uA—I—E) de. (10-2)
Substituting the expansions (9-13) for 4(z,t) and B(z,t) in (10-1) and integrating term
by term, we may verify without difficulty that

L(2) ~ Byo) 3. A48 2i2

s=0"

3 2, (103
as u—>00, uniformly with respect to z in D’. Similarly, using (5-9), we obtain from (10-2)
L)~ 2,02) 3 S 4 opyon) 5 242,

Comparing (10-3) and (10-4) with (5-14) and (5-15), we see that L;(z) has the desired

asymptotic form. It does not, however, satisfy the differential equation (5-11). For, from
(10-1) and (10-2), we derive

(10-4)

d2L; 6B

—l—u‘*P’(vz)J ““’“(2 Z—A+Z€ fB)

Vor. 247. A. 40
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Now, using (9-13) and (8-9) with g(z) = z, we find that
024 0B 04 0B 94 63A
g SATB G B =0 G g B =G 2 e
- d2; ,
and so H——Q——(uerf) L; = —Pj(vz) R(z), (10-5)
7 k4 7 04
— -3 —tvu 8 —-VuZl"
where R(z) =2u foe " azan dt—2u foe t s de.
Integrating the last integral twice by parts, we find
R(2) = 2v0e "V {R,(z) +u"*R,(2)}, (10-6)
dA 2 728 J24 _ 725-1
where R,(z) = (7?2),=1 = 340 gy Rale) = (292797:);_, EA @ gy (107)

Only if R(z) vanished identically would L;(z) be a solution of (5:11), and this is not the case.
Let us denote by W;(z) the solution of (5:11) with the conditions

Wi(a;) = Li(a;), Wi(a;) = Lj(a;), if a;is ﬁnite,}

. . (10-8)
Wi(z) ~Li(z) as z—>aj;, ifa;is finite.

We shall prove theorem B by showing that for large u the difference W;(z)—L;(z) is
asymptotically negligible compared with the error term in (5-12). Only a proof for j =1
need be recorded ; the other two cases are exactly similar.

From (5-11) and (10-5) we derive

(%;{WI(Z) —L(2)}—{uz+/(2) H{W(2) — L,(2)} = Pi(vz) R(2). (10-9)
Let us define a sequence of functions {#,(z)} by the relations %,(z) = 0 and
d P n(z) uzh,(z) = f(2) by, (2) + P{(v2) R(z) (n=1), (10-10)

with the boundary values h,(a,) = h,(a;) = 0. (10-11)

Suppose first that z lies in the part of D, common to the sector S;+S, (figure 1).
Applying the principle of variation of parameters to (10-10) and using (4:7), we find that

hz) = 21" [ Pu(02) Poo) = Pofu2) PUOYSO by (8) + P{l08) RO}, (10:12)
if n>1. Putting #» = 1 and substituting (10-6), we obtain
By(2) = e~ Ve exp {—2(vz)1} f Pz, 0, 0) (Ry () FutRy(0)} b (1013)

where U(z,0,t) = 4w ¥ {P,(vz) Py(vt) — Py(vz) P,(vt)} P{(vt) exp {{(vz)}. (10-14)

In consequence of the definition of the domain D; given in § 5 we may select a path of
integration in (10-12) and (10-13) lying wholly in D’ and sector S;-+S,, such that if ¢ is

any point on the path |exp (—26) | <|exp (—22Y) . (10-15)
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Using (45), (4-6) and (10-14), we deduce that

A +A | exp {$(vz)? —"(Ut)%}l
1oz ! 1+ oz |t

I ¥(z,v,t) I <

where the symbol 4 is used generically to denote a constant independent of z, « and ¢ If
(10-15) is substituted in the last result, it is seen that

|¥(z,0,8) | <A(L+]oz )7, (10-16)
and substituting this result in (10-13), we obtain
exp{—%(vz)}t
| hy(2) | <A e-rval Il):{Hvzl*} ’f | Ry(6) +urtRy(d) || dt). (1017)

From (10-7) and lemma 3 it follows that
Ri(2) = O(|z[™), Ry(2) = O(|z]™), (10-18)

as |z|—oo in D’, uniformly with respect to argz. The path of integration in (10-12),
(10-13) and (10-17) may be confined to the following contours and still satisfy the con-
ditions above:

(i) the level curves of exp (—%z*) through z and «,,
(ii) therays argz = 0, —%m,
(iii) the boundary of D’.
With the aid of (4-9) and (10-18), it may be shown that on such paths

f‘”] Ryt dt| <r,, f‘“| Ry(t) dt | <r,, (10-19)

where 7, r, are assignable constants independent of z and, of course, . Substituting these
inequalities in (10-17) and absorbing the factor 7, +u~¥r, in the generic constant 4, we obtain

| ha(2) [ <A e (14 0z )1 | exp{—§(u2)1} | (10-20)
Next, from (10-12), we obtain

() —h(2) = ; exp (=302 [tz 010 B ey 1)

provided n>1, where
X(2,0,t) = 2m ¥ { P, (vz) P,(vt) — Py(vz) P (vt)} exp {3(vz) —2(vt)1).
Using (4-5) and (10-15) we readily show (cf. (10-16)) that
| x(z,0,8) | <A(1+] vz |H)L (10-22)
Let us assume temporarily that
| #0(2) —hur(2) | <hy(0) €77V (14 [0z [) 7! | exp {—§(v2)1} |,
where £,(v) is independent of z. Then from (10-21) and (10-22) we obtain

i) =) | <5 k) errve [ ZREBC [ 1 ).

40-2
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Now from (5-1) we have f(z) = O(] z|~2%) as | z| 00, and so fal[f(t) d¢| taken along the

admissible paths of integration is a bounded function of z (cf. (10-19)), and may be absorbed
in the constant 4. Hence, by induction using (10-20), we deduce that

| hyr(2) =R, (2) | < A(%}”e_ﬂ/u | exp {+—I—Z§;§vﬁ)e} | (10-23)

Thus when v > A4, the series

0

2 {hy11(2) =Ry (2)}

n=0
converges uniformly with respect to z. From (10-8), (10-9), (10-10) and (10-11) it follows
that its sum is W,(z) —L,(z). Moreover, if v>>24, we have

| Wi(z) —Ly(2) | = ngo{}lnﬂ(z) —h,(2)}|<de Ve | exllji_liv;)&} lnioél%

exp{—%(vz)?

—94e vl I;g.—[;i]*) }|,
and so for large u, W,(z) — L,(z) is asymptotically negligible compared with the error term
in (5:12). This completes the proof of (5:12) for j = 1 when z lies in the part of D; common
to the sector S, +S,. A similar proof holds when z lies in the part of D, common to S, +S;,
the complementary solutions of (10-10) being taken to be P(vz) and P4(vz), in place of
P,(vz) and P,(vz).

For the derivative we derive, from (10-12) and (10-6),

(10-24)

H(2) = verveesp (302 [ "o ) RO Huo RO}, (1025)
and Bk = e (-39 "ntz 0 0 BOala o)

ifn> 1; where
¥, (z,0,8) = 4w ¥ {P{(vz) P,(vt) — Py(vz) P, (vt)} Py (vt) exp {3(vz)%},
Xa(2>0> 1) = 21 €7 (P} (02) Py(uf) — Pifuz) P, (vf)yexp {3(02)! —(ut) ).
We readily show (cf. (10-16) and (10-22)) that
|¥1(z0,0) |5 [ 1a(z0,0) | <A1+ ][0z [}), (10-27)
and thence, using also (10-19) and (10-23), that
| i(z) | <Ave " (1+]vz |}) [exp{—§(v2)'} |,
| i (2) =l (2) [ <A(Afv) ve ™V (1+ [ vz }) | exp{—5(v2)'} |.
Thus when v>24
| Wi(z2)—Li(2) | = éo{fl;ﬂ(z)—ﬁé(z)} <2Ave ™V (14| oz [}) |exp{—3(v2)}|. (10-28)

This result in conjunction with (10-4) establishes (5:13) when z lies in D, and S;+S,.
A similar proof holds when z lies in D, and S, +S;.
This completes the proof of theorem B when the arbitrary constants in the second of

(5-8) are prescribed by (9-3).
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11. EXISTENCE OF SOLUTIONS WHEN 4,(c), A,(¢), ..., DO NOT VANISH

Let ¢(u) be an arbitrary function of u with the property

w@~1+z¢s

as u—>00, where ¢,,¢,, ..., are constants. Then ¢(u) W;(z) is a solution of (5:11), and from
(5-14) and (5°15) we see that the asymptotic expansions of this function and its derivative
for large u are given by

¢(u) W;(z) ~ P;(vz) % A*( ) (”Z)SEOB*(Z)
st~ S5 i § 75

where
A=A+ 4+t A +¢,  BE¥=B+¢ B +...4+¢,_, B, +4,B,

C* C+¢l s= l+ +¢s 1 1+¢ CO) D* Ds+¢le—l+‘”+¢s-—lDl+¢s'
With the aid of (3-6) and (3-9) with g(z) = z, we may immediately verify that 4%, B¥, C*
and D satisfy the same recurrence relations as 4,, B,, C, and D,. Moreover, using (9-3),
we obtain A*(¢) = ¢,

In other words, dropping the stars, theorem B remains true if the arbitrary constants in
the second of (5-8) have any prescribed values, provided there exists a function ¢(u) with

the property b~ 1t § A (e)
s=1 s

for some point ¢ of D’. This is the result stated in § 5.

The work described above has been carried out as part of the research programme of
the National Physical Laboratory, and this paper is published by permission of the Director
of the Laboratory.
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